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A mechanical metronome consists of an inverted pendu-

lum and a counterweight on opposite sides of a pivot. A

sliding weight above the pivot is used to change the rate 

of vibration. As the pendulum vibrates, the metronome

ticks, and musicians use the sound to keep a steady tempo.

This vibration is an example of a periodic motion.

CHAPTER 11

o

Vibrations and
Waves

WHAT TO EXPECT

In this chapter, you will study a kind of periodic

motion called simple harmonic motion and will

learn about the relationship between simple

harmonic vibrations and waves.

WHY IT MATTERS

Waves can carry information, such as conversa-

tions and television broadcasts. Much of your

perception of the physical world is dependent

on waves. You could not hear or see anything

without sound waves and light waves.
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Simple Harmonic MotionSECTION 1

HOOKE’S LAW

A repeated motion, such as that of an acrobat swinging on a trapeze, is called

a periodic motion. Other periodic motions include those made by a child on a

playground swing, a wrecking ball swaying to and fro, and the pendulum of a

grandfather clock or a metronome. In each of these cases, the periodic motion

is back and forth over the same path.

One of the simplest types of back-and-forth periodic motion is the motion

of a mass attached to a spring, as shown in Figure 1. Let us assume that the

mass moves on a frictionless horizontal surface. When the spring is stretched

or compressed and then released, it vibrates back and forth about its

unstretched position. We will begin by considering this example, and then we

will apply our conclusions to the swinging motion of a trapeze acrobat.

At the equilibrium position, speed reaches a maximum

In Figure 1(a), the spring is stretched away from its

unstretched, or equilibrium, position (x = 0). In this stretched

position, the spring exerts a force on the mass toward the

equilibrium position. This spring force decreases as the

spring moves toward the equilibrium position, and it reaches

zero at equilibrium, as illustrated in Figure 1(b). The mass’s

acceleration also becomes zero at equilibrium.

Though the spring force and acceleration decrease as the

mass moves toward the equilibrium position, the speed of the

mass increases. At the equilibrium position, when accelera-

tion reaches zero, the speed reaches a maximum. At that

point, although the spring force is zero, the mass’s momen-

tum causes it to overshoot the equilibrium position and com-

press the spring.

At maximum displacement, spring force and

acceleration reach a maximum

As the mass moves beyond equilibrium, the spring force and

the acceleration increase. But the direction of the spring force

and of the acceleration (toward equilibrium) is opposite the

mass’s direction of motion (away from equilibrium), and the

mass begins to slow down.
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SECTION OBJECTIVES

� Identify the conditions of
simple harmonic motion.

� Explain how force, velocity,
and acceleration change as
an object vibrates with sim-
ple harmonic motion.

� Calculate the spring force
using Hooke’s law.

(a) 

Maximum
displacement

(b) 

Equilibrium

(c) 

Maximum
displacement

x

– x

Felastic

Felastic = 0

Felastic

x = 0

Figure 1

The direction of the force acting on the mass
(Felastic) is always opposite the direction of the
mass’s displacement from equilibrium (x = 0).
(a) When the spring is stretched to the right, the
spring force pulls the mass to the left. (b) When
the spring is unstretched, the spring force is zero.
(c) When the spring is compressed to the left, the
spring force is directed to the right.



1. Earth’s Orbit

The motion of Earth orbiting

the sun is periodic. Is this mo-

tion simple harmonic? Why

or why not?

2.Pinball

In pinball games, the force

exerted by a compressed

spring is used to release a

ball. If the distance the

spring is compressed is dou-

bled, how will the force

exerted on the ball change?

If the spring is

replaced with

one that is half

as stiff, how

will the force

acting on the

ball change?

When the spring’s compression is equal to the distance the spring was origi-

nally stretched away from the equilibrium position (x), as shown in Figure 1(c),

the mass is at maximum displacement, and the spring force and acceleration of

the mass reach a maximum. At this point, the speed of the mass becomes zero.

The spring force acting to the right causes the mass to change its direction, and

the mass begins moving back toward the equilibrium position. Then the entire

process begins again, and the mass continues to oscillate back and forth over the

same path.

In an ideal system, the mass-spring system would oscillate indefinitely. But

in the physical world, friction retards the motion of the vibrating mass, and

the mass-spring system eventually comes to rest. This effect is called damping.

In most cases, the effect of damping is minimal over a short period of time, so

the ideal mass-spring system provides an approximation for the motion of a

physical mass-spring system.

In simple harmonic motion, restoring force is proportional 

to displacement

As you have seen, the spring force always pushes or pulls the mass toward its

original equilibrium position. For this reason, it is sometimes called a restor-

ing force. Measurements show that the restoring force is directly proportional

to the displacement of the mass. This relationship was determined in 1678 by

Robert Hooke and is known as Hooke’s Law. The following equation mathe-

matically describes Hooke’s Law:

The negative sign in the equation signifies that the direction of the spring

force is always opposite the direction of the mass’s displacement from equilib-

rium. In other words, the negative sign shows that the spring force will tend to

move the object back to its equilibrium position.

As mentioned in the chapter “Work and Energy,” the quantity k is a positive

constant called the spring constant. The value of the spring constant is a mea-

sure of the stiffness of the spring. A greater value of k means a stiffer spring

because a greater force is needed to stretch or compress that spring a given

amount. The SI units of k are N/m. As a result, N is the unit of the spring force

when the spring constant (N/m) is multiplied by the displacement (m). The

motion of a vibrating mass-spring system is an example of

Simple harmonic motion describes any periodic motion that is the

result of a restoring force that is proportional to displacement. Because simple

harmonic motion involves a restoring force, every simple harmonic motion is

a back-and-forth motion over the same path.

motion.

simple harmonic

HOOKE’S LAW

Felastic = –kx

spring force = −(spring constant � displacement)

Developed and maintained by the
National Science Teachers Association

For a variety of links related to this

chapter, go to www.scilinks.org

Topic: Hooke’s Law

SciLinks Code: HF60756

simple harmonic motion

vibration about an equilibrium

position in which a restoring

force is proportional to the dis-

placement from equilibrium
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SAMPLE PROBLEM A

Hooke’s Law

P R O B L E M

If a mass of 0.55 kg attached to a vertical spring stretches
the spring 2.0 cm from its original equilibrium position,
what is the spring constant?

S O L U T I O N

Given: m = 0.55 kg x = −2.0 cm = −0.020 m

g = 9.81 m/s2

Unknown: k = ?

Diagram:

Choose an equation or situation: When the mass is attached to the spring,

the equilibrium position changes. At the new equilibrium position, the net

force acting on the mass is zero. So the spring force (given by Hooke’s law)

must be equal and opposite to the weight of the mass.

Fnet = 0 = Felastic + Fg

Felastic = –kx

Fg = −mg

−kx − mg = 0

Rearrange the equation to isolate the unknown:

kx = −mg

k = 
−m

x

g


Substitute the values into the equation and solve:

k =

The value of k implies that 270 N of force is

required to displace the spring 1 m.

k = 270 N/m

−(0.55 kg)(9.81 m/s2)


−0.020 m

Fg

Felastic

1. DEFINE

2. PLAN

3. CALCULATE

4. EVALUATE

m
x = −2.0 cm

x = 0

+x

CALCULATOR SOLUTION

The calculator answer for k is 269.775.

This answer is rounded to two signifi-

cant figures, 270 N/m.



A stretched or compressed spring has elastic potential energy

As you saw in the chapter “Work and Energy,” a stretched or compressed

spring stores elastic potential energy. To see how mechanical energy is con-

served in an ideal mass-spring system, consider an archer shooting an arrow

from a bow, as shown in Figure 2. Bending the bow by pulling back the bow-

string is analogous to stretching a spring. To simplify this situation, we will

disregard friction and internal energy.

Once the bowstring has been pulled back, the bow stores elastic potential

energy. Because the bow, arrow, and bowstring (the system) are now at rest,

the kinetic energy of the system is zero, and the mechanical energy of the sys-

tem is solely elastic potential energy.

When the bowstring is released, the bow’s elastic poten-

tial energy is converted to the kinetic energy of the arrow.

At the moment the arrow leaves the bowstring, it gains

most of the elastic potential energy originally stored in the

bow. (The rest of the elastic potential energy is converted to

the kinetic energy of the bow and the bowstring.) Thus,

once the arrow leaves the bowstring, the mechanical energy

of the bow-and-arrow system is solely kinetic. Because

mechanical energy must be conserved, the total kinetic

energy of the bow, arrow, and bowstring is equal to the elas-

tic potential energy originally stored in the bow.
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PRACTICE A

Hooke’s Law

1. Suppose the spring in Sample Problem A is replaced with a spring that 

stretches 36 cm from its equilibrium position.

a. What is the spring constant in this case?

b. Is this spring stiffer or less stiff than the one in Sample Problem A?

2. A load of 45 N attached to a spring that is hanging vertically stretches the

spring 0.14 m. What is the spring constant?

3. A slingshot consists of a light leather cup attached between two rubber

bands. If it takes a force of 32 N to stretch the bands 1.2 cm, what is the

equivalent spring constant of the two rubber bands?

4. How much force is required to pull a spring 3.0 cm from its equilibrium

position if the spring constant is 2.7 × 103 N/m?

Figure 2

The elastic potential energy stored
in this stretched bow is converted
into the kinetic energy of the arrow.

PHYSICSPHYSICS

Module 11
“Hooke’s Law” provides an
interactive lesson with guided
problem-solving practice to
teach you about springs and
spring constants.



THE INSIDE STORY
ON SHOCK ABSORBERS

Bumps in the road are certainly a nuisance, but with-

out strategic use of damping devices, they could also

prove deadly. To control a car going

110 km/h (70 mi/h), a driver needs all the

wheels on the ground. Bumps in the

road lift the wheels off the ground

and rob the driver of control. A good

solution is to fit the car with springs

at each wheel. The springs absorb

energy as the wheels

rise over the bumps

and push the

wheels back to the

pavement to keep

the wheels on the

road. However,

once set in motion,

springs tend to

continue to go up

and down in simple

harmonic motion. This affects the driver’s control of

the car and can also be uncomfortable.

One way to cut down on unwanted vibrations is to

use stiff springs that compress only a few centimeters

under thousands of newtons of force. Such springs have

very high spring constants and thus do not vibrate as

freely as softer springs with lower constants. However,

this solution reduces the driver’s ability to keep the

car’s wheels on the road.

To completely solve the problem, energy-absorbing

devices known as shock absorbers are placed parallel to

the springs in some automobiles, as shown in part (a) of

the illustration below. Shock absorbers are fluid-filled

tubes that turn the simple harmonic motion of the

springs into damped harmonic motion. In damped har-

monic motion, each cycle of stretch and compression of

the spring is much smaller than the previous cycle. Mod-

ern auto suspensions are set up so that all of a spring’s

energy is absorbed by the shock absorbers, eliminating

vibrations in just one up-and-down cycle. This keeps the

car from continually bouncing without sacrificing the

spring’s ability to keep the wheels on the road.

Different spring constants and shock absorber

damping are combined to give a wide variety of road

responses. For example, larger vehicles have heavy-duty

leaf springs made of stacks of steel strips, which have a

larger spring constant than coil springs do. In this type

of suspension system, the shock absorber is perpendic-

ular to the spring, as shown in part (b) of the illustra-

tion. The stiffness of the spring can affect steering

response time, traction, and the general feel of the car.

As a result of the variety of combinations that are

possible, your driving experiences can range from the

luxurious floating of a limousine to the bone-rattling

road feel of a sports car.

Coil spring

Shock absorber

Shock absorber Leaf spring

(a) (b)
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THE SIMPLE PENDULUM

As you have seen, the periodic motion of a

mass-spring system is one example of

simple harmonic motion. Now con-

sider the trapeze acrobats shown in

Figure 3(a). Like the vibrating

mass-spring system, the swinging

motion of a trapeze acrobat is a

periodic vibration. Is a trapeze

acrobat’s motion an example of

simple harmonic motion?

To answer this question, we will

use a simple pendulum as a model of

the acrobat’s motion, which is a physi-

cal pendulum. A simple pendulum consists

of a mass called a bob, which is attached to a

fixed string, as shown in Figure 3(b). When working with a simple pendu-

lum, we assume that the mass of the bob is concentrated at a point and that

the mass of the string is negligible. Furthermore, we disregard the effects of

friction and air resistance. For a physical pendulum, on the other hand, the

distribution of the mass must be considered, and friction and air resistance

also must be taken into account. To simplify our analysis, we will disregard

these complications and use a simple pendulum to approximate a physical

pendulum in all of our examples.

The restoring force of a pendulum is a component of the bob’s weight

To see whether the pendulum’s motion is simple harmonic, we must first

examine the forces exerted on the pendulum’s bob to determine which force

acts as the restoring force. If the restoring force is proportional to the dis-

placement, then the pendulum’s motion is simple harmonic. Let us select a

coordinate system in which the x-axis is tangent to the direction of motion

and the y-axis is perpendicular to the direction of motion. Because the bob

is always changing its position, these axes will change at each point of the

bob’s motion.

The forces acting on the bob at any point include the force exerted by the

string and the gravitational force. The force exerted by the string always acts

along the y-axis, which is along the string. The gravitational force can be

resolved into two components along the chosen axes, as shown in Figure 4.

Because both the force exerted by the string and the y component of the gravita-

tional force are perpendicular to the bob’s motion, the x component of the grav-

itational force is the net force acting on the bob in the direction of its motion. In

this case, the x component of the gravitational force always pulls the bob toward

its equilibrium position and hence is the restoring force. Note that the restoring

force (Fg,x = Fg sinq) is zero at equilibrium because q equals zero at this point.
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Figure 3

(a) The motion of these trapeze
acrobats is modeled by (b) a simple 
pendulum.

Fg,x

Fg,y

FT

Fg

θ

Figure 4

At any displacement from equilibri-
um, the weight of the bob (Fg) can
be resolved into two components.
The x component (Fg,x), which is
perpendicular to the string, is the
only force acting on the bob in the
direction of its motion.

(a)

(b)

θ



For small angles, the pendulum’s motion is simple harmonic

As with a mass-spring system, the restoring force of a simple pendulum is not

constant. Instead, the magnitude of the restoring force varies with the bob’s dis-

tance from the equilibrium position. The magnitude of the restoring force is pro-

portional to sinq . When the maximum angle of displacement q is relatively small

(<15°), sinq is approximately equal to q in radians. As a result, the restoring force

is very nearly proportional to the displacement and the pendulum’s motion is an

excellent approximation of simple harmonic motion. We will assume small angles

of displacement unless otherwise noted.

Because a simple pendulum vibrates with simple harmonic motion,

many of our earlier conclusions for a mass-spring system apply here. At

maximum displacement, the restoring force and acceleration reach a maxi-

mum while the speed becomes zero. Conversely, at equilibrium, the restor-

ing force and acceleration become zero and speed reaches a maximum.

Table 1 on the following page illustrates the analogy between a simple pen-

dulum and a mass-spring system.

Gravitational potential increases as a pendulum’s displacement increases

As with the mass-spring system, the mechanical energy of a simple pendulum

is conserved in an ideal (frictionless) system. However, the spring’s potential

energy is elastic, while the pendulum’s potential energy is gravitational. We

define the gravitational potential energy of a pendulum to be zero when it is

at the lowest point of its swing.

Figure 5 illustrates how a pendulum’s mechanical energy changes as the

pendulum oscillates. At maximum displacement from equilibrium, a pendu-

lum’s energy is entirely gravitational potential energy. As the pendulum

swings toward equilibrium, it gains kinetic energy and loses potential energy.

At the equilibrium position, its energy becomes solely kinetic.

As the pendulum swings past its equilibrium position, the kinetic energy

decreases while the gravitational potential energy increases. At maximum dis-

placement from equilibrium, the pendulum’s energy is once again entirely

gravitational potential energy.
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Total mechanical energy

Displacement(a) (b) (c)

Potential energy

Kinetic energy

Figure 5

Whether at maximum displacement (a), equilibrium (b), or 
maximum displacement in the other direction (c), the pendulum’s
total mechanical energy remains the same. However, as the graph
shows, the pendulum’s kinetic energy and potential energy are 
constantly changing.

Energy of a Pendulum

M A T E R I A L S  L I S T

• pendulum bob and string

• tape

• toy car

• protractor

• meterstick or tape measure

Tie one end of a piece of string

around the pendulum bob, and use

tape to secure it in place. Set the toy

car on a smooth surface, and hold the

string of the pendulum directly above

the car so that the bob rests on the

car.Use your other hand to pull back

the bob of the pendulum, and have

your partner measure the angle of

the pendulum with the protractor.

Release the pendulum so that

the bob strikes the car. Measure

the displacement of the car. What

happened to the pendulum’s poten-

tial energy after you released the

bob? Repeat the process using dif-

ferent angles. How can you account

for your results?

Developed and maintained by the
National Science Teachers Association

For a variety of links related to this

chapter, go to www.scilinks.org

Topic: Pendulums

SciLinks Code: HF61121
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Table 1 Simple Harmonic Motion

maximum displacement

equilibrium

maximum displacement

equilibrium

maximum displacement

θ

m

Fx = Fmax

a = amax

v = 0

v = vmax

Fx = 0

a = 0

θ

Fx = Fmax

a = amax

v = 0

v = vmax

Fx = 0

a = 0

θ

Fx = Fmax

a = amax

v = 0

m

m

m

x0x

m

+–

SECTION REVIEW

1. Which of these periodic motions are simple harmonic?

a. a child swinging on a playground swing (q = 45°)

b. a CD rotating in a player

c. an oscillating clock pendulum (q = 10°)

2. A pinball machine uses a spring that is compressed 4.0 cm to launch a

ball. If the spring constant is 13 N/m, what is the force on the ball at the

moment the spring is released?

3. How does the restoring force acting on a pendulum bob change as the

bob swings toward the equilibrium position? How do the bob’s accelera-

tion (along the direction of motion) and velocity change?

4. Critical Thinking When an acrobat reaches the equilibrium posi-

tion, the net force acting along the direction of motion is zero. Why does

the acrobat swing past the equilibrium position?



amplitude

the maximum displacement from

equilibrium

period

the time that it takes a complete

cycle to occur

frequency

the number of cycles or vibra-

tions per unit of time

Figure 6

For any periodic motion—such as the motion of
this amusement park ride in Helsinki, Finland—
period and frequency are inversely related.

Measuring Simple 
Harmonic Motion

SECTION 2

AMPLITUDE, PERIOD, AND FREQUENCY

In the absence of friction, a moving trapeze always returns to the same maxi-

mum displacement after each swing. This maximum displacement from the

equilibrium position is the A pendulum’s amplitude can be meas-

ured by the angle between the pendulum’s equilibrium position and its maxi-

mum displacement. For a mass-spring system, the amplitude is the maximum

amount the spring is stretched or compressed from its equilibrium position.

Period and frequency measure time

Imagine the ride shown in Figure 6 swinging from maximum displacement

on one side of equilibrium to maximum displacement on the other side, and

then back again. This cycle is considered one complete cycle of motion. The

T, is the time it takes for this complete cycle of motion. For example,

if one complete cycle takes 20 s, then the period of this motion is 20 s. Note

that after the time T, the object is back where it started.

The number of complete cycles the ride swings through in a unit of time 

is the ride’s f. If one complete cycle takes 20 s, then the ride’s fre-

quency is 

2

1

0
 cycles/s, or 0.05 cycles/s. The SI unit of frequency is s–1, known as

hertz (Hz). In this case, the ride’s frequency is 0.05 Hz.

Period and frequency can be confusing because both are concepts involv-

ing time in simple harmonic motion. Notice that the period is the time per

cycle and that the frequency is the number of cycles per unit time, so they are

inversely related.

f = 

T

1
 or T = 

1

f


This relationship was used to determine the frequency of the ride.

f = 

T

1
 = 

20

1

s
 = 0.05 Hz

frequency,

period,

amplitude.

SECTION OBJECTIVES

� Identify the amplitude of
vibration.

� Recognize the relationship
between period and 
frequency.

� Calculate the period and 
frequency of an object vibrat-
ing with simple harmonic
motion.

In any problem where you have a value for period or 

frequency, you can calculate the other value. These terms

are summarized in Table 2 on the next page.



Table 2 Measures of Simple Harmonic Motion

Term Example Definition SI unit

amplitude maximum displacement radian, rad

from equilibrium meter, m

period, T time that it takes second, s

to complete a

full cycle

frequency, f number of cycles or hertz, Hz

vibrations per (Hz = s− 1)

unit of time

θ

The period of a simple pendulum depends on pendulum length 

and free-fall acceleration

Although both a simple pendulum and a mass-spring system vibrate with

simple harmonic motion, calculating the period and frequency of each

requires a separate equation. This is because in each, the period and frequency

depend on different physical factors.

Consider an experimental setup of two pendulums of the same length but

with bobs of different masses. The length of a pendulum is measured from the

pivot point to the center of mass of the pendulum bob. If you were to pull each

bob aside the same small distance and then release them at the same time, each

pendulum would complete one vibration in the same amount of time. If you

then changed the amplitude of one of the pendulums, you would find that they

would still have the same period. Thus, for small amplitudes, the period of a

pendulum does not depend on the mass or on the amplitude.

However, changing the length of a pendulum does affect its period. A

change in the free-fall acceleration also affects the period of a pendulum. The

exact relationship between these variables can be derived mathematically or

found experimentally.

PERIOD OF A SIMPLE PENDULUM IN SIMPLE HARMONIC MOTION

T = 2p��aLg



period = 2p × square root of (length divided by free-fall acceleration)
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Galileo is credited as the first per-

son to notice that the motion of a

pendulum depends on its length and

is independent of its amplitude (for

small angles). He supposedly

observed this while attending

church services at a cathedral in

Pisa. The pendulum he studied was 

a swinging chandelier that was set in

motion when someone bumped it

while lighting the candles. Galileo is

said to have measured its frequency,

and hence its period, by timing the

swings with his pulse.

Did you know?

Integrating Technology
Visit go.hrw.com for the activity

“Bicycle Design and Shock 

Absorption.”

Keyword HF6VIBX



Why does the period of a pendulum depend on pendulum length and free-

fall acceleration? When two pendulums have different lengths but the same

amplitude, the shorter pendulum will have a smaller arc to travel through, as

shown in Figure 7. Because the distance from maximum displacement to equi-

librium is less while the acceleration caused by the restoring force remains the

same, the shorter pendulum will have a shorter period.

Why don’t mass and amplitude affect the period of a pendulum? When the

bobs of two pendulums differ in mass, the heavier mass provides a larger

restoring force, but it also needs a larger force to achieve the same accelera-

tion. This is similar to the situation for objects in free fall, which all have the

same acceleration regardless of their mass. Because the acceleration of both

pendulums is the same, the period for both is also the same.

For small angles (<15°), when the amplitude of a pendulum increases, the

restoring force also increases proportionally. Because force is proportional to

acceleration, the initial acceleration will be greater. However, the distance this

pendulum must cover is also greater. For small angles, the effects of the two

increasing quantities cancel and the pendulum’s period remains the same.
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L1

L2
θ θ

m

m

Figure 7

When the length of one pendulum
is decreased, the distance that the
pendulum travels to equilibrium is
also decreased. Because the acceler-
ations of the two pendulums are
equal, the shorter pendulum will
have a smaller period.

SAMPLE PROBLEM B

Simple Harmonic Motion of a Simple Pendulum

P R O B L E M

You need to know the height of a tower, but darkness obscures the ceiling.
You note that a pendulum extending from the ceiling almost touches the
floor and that its period is 12 s. How tall is the tower?

S O L U T I O N

Given: T = 12 s ag = g = 9.81 m/s2

Unknown: L = ?

Use the equation for the period of a simple pendulum, and solve for L.

T = 2p��aLg




T

2

√

p

ag�
 =

√

L�


T

4p

2a
2
g

 = L  

L = 
(12 s)2(

4

9

p

.8
2

1 m/s2)


L = 36 m

Remember that on Earth’s 
surface, ag = g = 9.81 m/s2.
Use this value in the equation
for the period of a pendulum if
a problem does not specify oth-
erwise. At higher altitudes or on
different planets, use the given
value of ag instead.



1. Pendulum on the Moon

The free-fall acceleration on the surface of the

moon is approximately one-sixth of the free-fall

acceleration on the surface of Earth. Compare the

period of a pendulum on the moon with that of an

identical pendulum set in motion on Earth.

2. Pendulum Clocks

Why is a wound mainspring

often used to provide energy to

a pendulum clock in order to

prevent the amplitude of the

pendulum from decreasing?

Period of a mass-spring system depends on mass and spring constant

Now consider the period of a mass-spring system. In this case, according to

Hooke’s law, the restoring force acting on the mass is determined by the dis-

placement of the mass and by the spring constant (Felastic = –kx). The magni-

tude of the mass does not affect the restoring force. So, unlike in the case of

the pendulum, in which a heavier mass increased both the force on the bob

and the bob’s inertia, a heavier mass attached to a spring increases inertia

without providing a compensating increase in force. Because of this increase

in inertia, a heavy mass has a smaller acceleration than a light mass has. Thus,

a heavy mass will take more time to complete one cycle of motion. In other

words, the heavy mass has a greater period. Thus, as mass increases, the period

of vibration increases when there is no compensating increase in force.

PRACTICE B

Simple Harmonic Motion of a Simple Pendulum

1. If the period of the pendulum in the preceding sample problem were 

24 s, how tall would the tower be?

2. You are designing a pendulum clock to have a period of 1.0 s. How long

should the pendulum be?

3. A trapeze artist swings in simple harmonic motion with a period of 3.8 s.

Calculate the length of the cables supporting the trapeze.

4. Calculate the period and frequency of a 3.500 m long pendulum at the

following locations:

a. the North Pole, where ag = 9.832 m/s2

b. Chicago, where ag = 9.803 m/s2

c. Jakarta, Indonesia, where ag = 9.782 m/s2



The greater the spring constant (k), the stiffer the spring; hence a greater force is

required to stretch or compress the spring. When force is greater, acceleration is

greater and the amount of time required for a single cycle should decrease (assum-

ing that the amplitude remains constant). Thus, for a given amplitude, a stiffer

spring will take less time to complete one cycle of motion than one that is less stiff.

As with the pendulum, the equation for the period of a mass-spring sys-

tem can be derived mathematically or found experimentally.

Note that changing the amplitude of the vibration does not affect the 

period. This statement is true only for systems and circumstances in which 

the spring obeys Hooke’s law.

PERIOD OF A MASS-SPRING SYSTEM IN SIMPLE HARMONIC MOTION

T = 2p�
m

k���
period = 2p × square root of (mass divided by spring constant)
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SAMPLE PROBLEM C

Simple Harmonic Motion of a Mass-Spring System

P R O B L E M

The body of a 1275 kg car is supported on a frame by four springs. Two
people riding in the car have a combined mass of 153 kg. When driven
over a pothole in the road, the frame vibrates with a period of 0.840 s. For
the first few seconds, the vibration approximates simple harmonic
motion. Find the spring constant of a single spring.

S O L U T I O N

Given: m = 
(1275 kg

4

+ 153 kg)
 = 357 kg T = 0.840 s

Unknown: k = ?

Use the equation for the period of a mass-spring system, and solve for k.

T = 2p�
m

k
��

T2
= 4p

2�
m

k
�

k = =

k = 2.00 × 104 N/m

4p
2(357 kg)


(0.840 s)2

4p
2m


T2
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PRACTICE C

Simple Harmonic Motion of a Mass-Spring System

1. A mass of 0.30 kg is attached to a spring and is set into vibration with a

period of 0.24 s. What is the spring constant of the spring?

2. When a mass of 25 g is attached to a certain spring, it makes 20 complete

vibrations in 4.0 s. What is the spring constant of the spring?

3. A 125 N object vibrates with a period of 3.56 s when hanging from a

spring. What is the spring constant of the spring?

4. When two more people get into the car described in Sample Problem C,

the total mass of all four occupants of the car becomes 255 kg. Now what

is the period of vibration of the car when it is driven over a pothole in

the road?

5. A spring of spring constant 30.0 N/m is attached to different masses, and

the system is set in motion. Find the period and frequency of vibration

for masses of the following magnitudes:

a. 2.3 kg

b. 15 g

c. 1.9 kg

SECTION REVIEW

1. The reading on a metronome indicates the number of oscillations per

minute. What are the frequency and period of the metronome’s vibra-

tion when the metronome is set at 180?

2. A child swings on a playground swing with a 2.5 m long chain.

a. What is the period of the child’s motion?

b. What is the frequency of vibration?

3. A 0.75 kg mass attached to a vertical spring stretches the spring 0.30 m.

a. What is the spring constant?

b. The mass-spring system is now placed on a horizontal surface and set

vibrating. What is the period of the vibration?

4. Critical Thinking Two mass-spring systems vibrate with simple

harmonic motion. If the spring constants are equal and the mass of one

system is twice that of the other, which system has a greater period? 



Properties of WavesSECTION 3

WAVE MOTION

Consider what happens to the surface of a pond when you drop a pebble into

the water. The disturbance created by the pebble generates water waves that

travel away from the disturbance, as seen in Figure 8. If you examined the

motion of a leaf floating near the disturbance, you would see that the leaf

moves up and down and back and forth about its original position. However,

the leaf does not undergo any net displacement from the motion of the waves.

The leaf ’s motion indicates the motion of the particles in the water. The

water molecules move locally, like the leaf does, but they do not travel across

the pond. That is, the water wave moves from one place to another, but the

water itself is not carried with it.

A wave is the motion of a disturbance

Ripple waves in a pond start with a disturbance at some point in the water.

This disturbance causes water on the surface near that point to move, which

in turn causes points farther away to move. In this way, the waves travel out-

ward in a circular pattern away from the original disturbance.

In this example, the water in the pond is the through which the

disturbance travels. Particles in the medium—in this case, water molecules—

move in vertical circles as waves pass. Note that the medium does not actually

travel with the waves. After the waves have passed, the water returns to its

original position.

Waves of almost every kind require a material medium in which to travel.

Sound waves, for example, cannot travel through outer space, because space is

very nearly a vacuum. In order for sound waves to travel, they must have a

medium such as air or water. Waves that require a material medium are called

Not all wave propagation requires a medium. Electromagnetic waves, such

as visible light, radio waves, microwaves, and X rays, can travel through a 

vacuum. You will study electromagnetic waves in later chapters.

mechanical waves.

medium
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SECTION OBJECTIVES

� Distinguish local particle
vibrations from overall wave
motion.

� Differentiate between pulse
waves and periodic waves.

� Interpret waveforms of
transverse and longitudinal
waves.

� Apply the relationship
among wave speed, fre-
quency, and wavelength to
solve problems.

� Relate energy and amplitude.

Figure 8

A pebble dropped into a pond
creates ripple waves similar to
those shown here.

medium

a physical environment through

which a disturbance can travel

mechanical wave

a wave that requires a medium

through which to travel



WAVE TYPES

One of the simplest ways to demonstrate wave motion is to flip one end of a

taut rope whose opposite end is fixed, as shown in Figure 9. The flip of your

wrist creates a pulse that travels to the fixed end with a definite speed. A wave

that consists of a single traveling pulse is called a pulse wave.

Now imagine that you continue to generate pulses at one end of the rope.

Together, these pulses form what is called a periodic wave. Whenever the

source of a wave’s motion is a periodic motion, such as the motion of your

hand moving up and down repeatedly, a periodic wave is produced.

Sine waves describe particles vibrating with simple harmonic motion

Figure 10 depicts a blade that vibrates with simple harmonic motion and thus

makes a periodic wave on a string. As the wave travels to the right, any single

point on the string vibrates up and down. Because the blade is vibrating with

simple harmonic motion, the vibration of each point of the string is also sim-

ple harmonic. A wave whose source vibrates with simple harmonic motion is

called a sine wave. Thus, a sine wave is a special case of a periodic wave in

which the periodic motion is simple harmonic. The wave in Figure 10 is

called a sine wave because a graph of the trigonometric function y = sin x pro-

duces this curve when plotted.

A close look at a single point on the string illustrated in Figure 10 shows that

its motion resembles the motion of a mass hanging from a vibrating spring. As

the wave travels to the right, the point vibrates around its equilibrium position

with simple harmonic motion. This relationship between simple harmonic

motion and wave motion enables us to use some of the terms and concepts

from simple harmonic motion in our study of wave motion.
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(a) (c)

(b) (d)

Vibrating
blade

Figure 10

As the sine wave created by this
vibrating blade travels to the right,
a single point on the string 
vibrates up and down with simple
harmonic motion.

Figure 9

A single flip of the wrist creates a
pulse wave on a taut rope.
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Figure 11

(a) A picture of a transverse wave
at some instant t can be turned into
(b) a graph. The x-axis represents
the equilibrium position of the
string. The curve shows the dis-
placements of the string at time t.

crest

the highest point above the equi-

librium position

transverse wave

a wave whose particles vibrate

perpendicularly to the direction

the wave is traveling

trough

the lowest point below the equi-

librium position

wavelength

the distance between two adja-

cent similar points of a wave,

such as from crest to crest or

from trough to trough

D
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Vibrations of a transverse wave are perpendicular to the wave motion

Figure 11(a) is a representation of the wave shown in Figure 10 (on the pre-

vious page) at a specific instant of time, t. This wave travels to the right as the

particles of the rope vibrate up and down. Thus, the vibrations are perpendic-

ular to the direction of the wave’s motion. A wave such as this, in which the

particles of the disturbed medium move perpendicularly to the wave motion,

is called a 

The wave shown in Figure 11(a) can be represented on a coordinate sys-

tem, as shown in Figure 11(b). A picture of a wave like the one in Fig-

ure 11(b) is sometimes called a waveform. A waveform can represent either

the displacements of each point of the wave at a single moment in time or the

displacements of a single particle as time passes.

In this case, the waveform depicts the displacements at a single instant.

The x-axis represents the equilibrium position of the string, and the y coor-

dinates of the curve represent the displacement of each point of the string at

time t. For example, points where the curve crosses the x-axis (where y = 0)

have zero displacement. Conversely, at the highest and lowest points of the

curve, where displacement is greatest, the absolute values of y are greatest.

Wave measures include crest, trough, amplitude, and wavelength

A wave can be measured in terms of its displacement from equilibrium. The

highest point above the equilibrium position is called the wave The

lowest point below the equilibrium position is the of the wave. As in

simple harmonic motion, amplitude is a measure of maximum displacement

from equilibrium. The amplitude of a wave is the distance from the equilibri-

um position to a crest or to a trough, as shown in Figure 11(b).

As a wave passes a given point along its path, that point undergoes cyclical

motion. The point is displaced first in one direction and then in the other

direction. Finally, the point returns to its original equilibrium position, there-

by completing one cycle. The distance the wave travels along its path during

one cycle is called the l (the Greek letter lambda). A simple way

to find the wavelength is to measure the distance between two adjacent similar

points of the wave, such as from crest to crest or from trough to trough.

Notice in Figure 11(b) that the distances between adjacent crests or troughs

in the waveform are equal.

wavelength,

trough

crest.

transverse wave.



Vibrations of a longitudinal wave are parallel to the wave motion

You can create another type of wave with a spring. Suppose that one end of

the spring is fixed and that the free end is pumped back and forth along the

length of the spring, as shown in Figure 12. This action produces compressed

and stretched regions of the coil that travel along the spring. The displace-

ment of the coils is in the direction of wave motion. In other words, the vibra-

tions are parallel to the motion of the wave.

When the particles of the medium vibrate parallel to the direction of wave

motion, the wave is called a Sound waves in the air are

longitudinal waves because air particles vibrate back and forth in a direction

parallel to the direction of wave motion.

A longitudinal wave can also be described by a sine curve. Consider a longi-

tudinal wave traveling on a spring. Figure 13(a) is a snapshot of the longitudi-

nal wave at some instant t, and Figure 13(b) shows the sine curve representing

the wave. The compressed regions correspond to the crests of the waveform,

and the stretched regions correspond to troughs.

The type of wave represented by the curve in Figure 13(b) is often called a

density wave or a pressure wave. The crests, where the spring coils are com-

pressed, are regions of high density and pressure (relative to the equilibrium

density or pressure of the medium). Conversely, the troughs, where the coils

are stretched, are regions of low density and pressure.

longitudinal wave.

PERIOD, FREQUENCY, AND WAVE SPEED

Sound waves may begin with the vibrations of your vocal cords, a guitar

string, or a taut drumhead. In each of these cases, the source of wave motion

is a vibrating object. The vibrating object that causes a sine wave always has a

characteristic frequency. Because this motion is transferred to the particles of

the medium, the frequency of vibration of the particles is equal to the fre-

quency of the source. When the vibrating particles of the medium complete

one full cycle, one complete wavelength passes any given point. Thus, wave

frequency describes the number of waves that pass a given point in a unit of

time.
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Compressed CompressedStretched Stretched

Figure 12

As this wave travels to the right, the
coils of the spring are tighter in
some regions and looser in others.
The displacement of the coils is par-
allel to the direction of wave
motion, so this wave is longitudinal.

longitudinal wave

a wave whose particles vibrate

parallel to the direction the wave

is traveling

(a) (b)
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n
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Figure 13

(a) A longitudinal wave at some
instant t can also be represented by
(b) a graph. The crests of this
waveform correspond to com-
pressed regions, and the troughs
correspond to stretched regions.



The period of a wave is the time required for one complete cycle of vibra-

tion of the medium’s particles. As the particles of the medium complete one

full cycle of vibration at any point of the wave, one wavelength passes by that

point. Thus, the period of a wave describes the time it takes for a complete

wavelength to pass a given point. The relationship between period and fre-

quency seen earlier in this chapter holds true for waves as well; the period of a

wave is inversely related to its frequency.

Wave speed equals frequency times wavelength

We can now derive an expression for the speed of a wave in terms of its period

or frequency. We know that speed is equal to displacement divided by the time

it takes to undergo that displacement.

v = 
∆

∆

x

t


For waves, a displacement of one wavelength (l) occurs in a time interval

equal to one period of the vibration (T ).

v = 
T

l


As you saw earlier in this chapter, frequency and period are inversely related.

f = 
T

1


Substituting this frequency relationship into the previous equation for

speed gives a new equation for the speed of a wave.

v = 
T

l
 = fl

The speed of a mechanical wave is constant for any given medium. For

example, at a concert, sound waves from different instruments reach your ears

at the same moment, even when the frequencies of the sound waves are differ-

ent. Thus, although the frequencies and wavelengths of the sounds produced

by each instrument may be different, the product of the frequency and wave-

length is always the same at the same temperature. As a result, when a mechan-

ical wave’s frequency is increased, its wavelength must decrease in order for its

speed to remain constant. The speed of a wave changes only when the wave

moves from one medium to another or when certain properties of the medium

(such as temperature) are varied.

SPEED OF A WAVE

v = fl

speed of a wave = frequency × wavelength

Chapter 11386

The frequencies of sound waves that

are audible to humans range from

20 Hz to 20 000 Hz. Electromagnetic

waves, which include visible light,

radio waves, and microwaves, have an

even broader range of frequencies—

from about 104 Hz and lower to

1025 Hz and higher.

Did you know?

PHYSICSPHYSICS

Module 12
“Frequency and Wave-
length” provides an interactive
lesson with guided problem-
solving practice to teach you
about wave properties and the
wave-speed equation.
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SAMPLE PROBLEM D

Wave Speed

P R O B L E M

A piano string tuned to middle C vibrates with a frequency of 262 Hz.
Assuming the speed of sound in air is 343 m/s, find the wavelength of the
sound waves produced by the string.

S O L U T I O N

Given: v = 343 m/s f = 262 Hz

Unknown: l = ?

Use the equation relating speed, wavelength, and frequency for a wave.

v = f l

l = 

f

v
 = 

3

2

4

6

3

2

m

H

/

z

s
 = 

34

2

3

6

m

2 s

•

−

s
1

−1



l = 1.31 m

PRACTICE D

Wave Speed

1. A piano emits frequencies that range from a low of about 28 Hz to a high

of about 4200 Hz. Find the range of wavelengths in air attained by this

instrument when the speed of sound in air is 340 m/s.

2. The speed of all electromagnetic waves in empty space is 3.00 × 108 m/s.

Calculate the wavelength of electromagnetic waves emitted at the follow-

ing frequencies:

a. radio waves at 88.0 MHz

b. visible light at 6.0 × 108 MHz

c. X rays at 3.0 × 1012 MHz

3. The red light emitted by a He-Ne laser has a wavelength of 633 nm in air

and travels at 3.00 × 108 m/s. Find the frequency of the laser light.

4. A tuning fork produces a sound with a frequency of 256 Hz and a wave-

length in air of 1.35 m.

a. What value does this give for the speed of sound in air?

b. What would be the wavelength of this same sound in water in which

sound travels at 1500 m/s?



Waves transfer energy

When a pebble is dropped into a pond, the water wave that is produced carries

a certain amount of energy. As the wave spreads to other parts of the pond,

the energy likewise moves across the pond. Thus, the wave transfers energy

from one place in the pond to another while the water remains in essentially

the same place. In other words, waves transfer energy by the vibration of mat-

ter rather than by the transfer of matter itself. For this reason, waves are often

able to transport energy efficiently.

The rate at which a wave transfers energy depends on the amplitude at

which the particles of the medium are vibrating. The greater the amplitude,

the more energy a wave carries in a given time interval. For a mechanical

wave, the energy transferred is proportional to the square of the wave’s ampli-

tude. When the amplitude of a mechanical wave is doubled, the energy it car-

ries in a given time interval increases by a factor of four. Conversely, when the

amplitude is halved, the energy decreases by a factor of four.

As with a mass-spring system or a simple pendulum, the amplitude of a

wave gradually diminishes over time as its energy is dissipated. This effect,

called damping, is usually minimal over relatively short distances. For simplic-

ity, we have disregarded damping in our analysis of wave motions.
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SECTION REVIEW

1. As waves pass by a duck floating on a lake, the duck bobs up and down

but remains in essentially one place. Explain why the duck is not carried

along by the wave motion.

2. Sketch each of the following waves that are on a spring that is attached to

a wall at one end:

a. a pulse wave that is longitudinal

b. a periodic wave that is longitudinal

c. a pulse wave that is transverse

d. a periodic wave that is transverse

3. Draw a graph for each of the waves described in items (b) and (d) above,

and label the y-axis of each graph with the appropriate variable. Label

the following on each graph: crest, trough, wavelength, and amplitude.

4. If the amplitude of a sound wave is increased by a factor of four, how does

the energy carried by the sound wave in a given time interval change?

5. The smallest insects that a bat can detect are approximately the size of

one wavelength of the sound the bat makes. What is the minimum 

frequency of sound waves required for the bat to detect an insect that 

is 0.57 cm long? (Assume the speed of sound is 340 m/s.)

Integrating Earth Science
Visit go.hrw.com for the activity

“Earthquake Waves.”

Keyword HF6VIBX



SECTION OBJECTIVES

� Apply the superposition 
principle.

� Differentiate between con-
structive and destructive
interference.

� Predict when a reflected
wave will be inverted.

� Predict whether specific trav-
eling waves will produce a
standing wave.

� Identify nodes and antinodes
of a standing wave.
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Wave Interactions SECTION 4

WAVE INTERFERENCE

When two bumper boats collide, as shown in Figure 14, each bounces back in

another direction. The two bumper boats cannot occupy the same space, and

so they are forced to change the direction of their motion. This is true not just

of bumper boats but of all matter. Two different material objects can never

occupy the same space at the same time.

When two waves come together, they do not bounce back as bumper boats

do. If you listen carefully at a concert, you can distinguish the sounds of differ-

ent instruments. Trumpet sounds are different from flute sounds, even when the

two instruments are played at the same time. The sound waves of each instru-

ment are unaffected by the other waves that are passing through the same space

at the same moment. Because mechanical waves are not matter but rather are

displacements of matter, two waves can occupy the same space at the same time.

The combination of two overlapping waves is called superposition.

Figure 15 shows two sets of water waves in a ripple tank. As the waves

move outward from their respective sources, they pass through one another.

As they pass through one another, the waves interact to form an interference

pattern of light and dark bands. Although this superposition of mechanical

waves is fairly easy to observe, these are not the only kind of waves that can

pass through the same space at the same time. Visible light and other forms of

electromagnetic radiation also undergo superposition, and they can interact

to form interference patterns.

Figure 14

Two of these bumper boats cannot
be in the same place at one time.
Waves, on the other hand, can pass
through one another.

Figure 15

This ripple tank demonstrates the
interference of water waves.



Displacements in the same direction produce

constructive interference

In Figure 16(a), two wave pulses are traveling toward each other on a

stretched rope. The larger pulse is moving to the right, while the smaller pulse

moves toward the left. At the moment the two wave pulses meet, a resultant

wave is formed, as shown in Figure 16(b).

At each point along the rope, the displacements due to the two pulses are

added together, and the result is the displacement of the resultant wave. For

example, when the two pulses exactly coincide, as they do in Figure 16(c), the

amplitude of the resultant wave is equal to the sum of the amplitudes of each

pulse. This method of summing the displacements of waves is known as the

superposition principle. According to this principle, when two or more waves

travel through a medium at the same time, the resultant wave is the sum of the

displacements of the individual waves at each point. Ideally, the superposition

principle holds true for all types of waves, both mechanical and electromag-

netic. However, experiments show that in reality the superposition principle is

valid only when the individual waves have small amplitudes—an assumption

we make in all our examples.

Notice that after the two pulses pass through each other, each pulse has the

same shape it had before the waves met and each is still traveling in the same

direction, as shown in Figure 16(d). This is true for sound waves at a concert,

water waves in a pond, light waves, and other types of waves. Each wave main-

tains its own characteristics after interference, just as the two pulses do in our

example above.

You have seen that when more than one wave travels through the same space

at the same time, the resultant wave is equal to the sum of the individual dis-

placements. If the displacements are on the same side of equilibrium, as in Fig-

ure 16, they have the same sign. When added together, the resultant wave is larger

than the individual displacements. This is called constructive interference.
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constructive interference

a superposition of two or more

waves in which individual dis-

placements on the same side 

of the equilibrium position are

added together to form the 

resultant wave

(a)

(b)

(c)

(d)

Figure 16

When these two wave pulses meet,
the displacements at each point
add up to form a resultant wave.
This is an example of constructive
interference.



Displacements in opposite directions produce

destructive interference

What happens if the pulses are on opposite sides of the equilibrium position,

as they are in Figure 17(a)? In this case, the displacements have different signs,

one positive and one negative. When the positive and negative displacements

are added, as shown in Figure 17(b) and (c), the resultant wave is the difference

between the pulses. This is called After the pulses

separate, their shapes are unchanged, as seen in Figure 17(d).

destructive interference.

Figure 18 shows two pulses of equal amplitude but with displacements of

opposite signs. When the two pulses coincide and the displacements are

added, the resultant wave has a displacement of zero. In other words, at the

instant the two pulses overlap, they completely cancel each other; it is as if

there were no disturbance at all. This situation is known as complete destruc-

tive interference.

If these waves were water waves coming together, one of the waves would

be acting to pull an individual drop of water upward at the same instant and

with the same force that another wave would be acting to pull it downward.

The result would be no net force on the drop, and there would be no net dis-

placement of the water at that moment.

Thus far, we have considered the interference produced by two transverse

pulse waves. The superposition principle is valid for longitudinal waves as

well. In a compression, particles are moved closer together, while in a rarefaction,

particles are spread farther apart. So, when a compression and a rarefaction

interfere, there is destructive interference.

In our examples, we have considered constructive and destructive interfer-

ence separately, and we have dealt only with pulse waves. With periodic waves,

complicated patterns arise that involve regions of constructive and destructive

interference. The locations of these regions may remain fixed or may vary

with time as the individual waves travel.
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Figure 18

The resultant displacement at each
point of the string is zero, so the
two pulses cancel one another. This
is complete destructive interference.

destructive interference

a superposition of two or more

waves in which individual dis-

placements on opposite sides 

of the equilibrium position are

added together to form the 

resultant wave

(a)

(b)

(c)

(d)

Figure 17

In this case, known as destructive
interference, the displacement of
one pulse is subtracted from the
displacement of the other.



REFLECTION

In our discussion of waves so far, we have assumed that the waves being ana-

lyzed could travel indefinitely without striking anything that would stop them

or otherwise change their motion. But what happens to the motion of a wave

when it reaches a boundary? 

At a free boundary, waves are reflected

Consider a pulse wave traveling on a stretched rope whose end forms a ring

around a post, as shown in Figure 19(a). We will assume that the ring is free

to slide along the post without friction.

As the pulse travels to the right, each point of the rope moves up once and

then back down. When the pulse reaches the boundary, the rope is free to

move up as usual, and it pulls the ring up with it. Then, the ring is pulled back

down by the tension in the rope. The movement of the rope at the post is sim-

ilar to the movement that would result if someone were to whip the rope

upward to send a pulse to the left, which would cause a pulse to travel back

along the rope to the left. This is called reflection. Note that the reflected pulse

is upright and has the same amplitude as the incident pulse.

At a fixed boundary, waves are reflected and inverted

Now consider a pulse traveling on a stretched rope that is fixed at one end, as

in Figure 19(b). When the pulse reaches the wall, the rope exerts an upward

force on the wall, and the wall in turn exerts an equal and opposite reaction

force on the rope. This downward force on the rope causes a displacement in

the direction opposite the displacement of the original pulse. As a result, the

pulse is inverted after reflection.
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(a)

Incident

pulse

Incident

pulse

Reflected

pulse

(b) Reflected

pulse

Figure 19

(a) When a pulse travels down a
rope whose end is free to slide up
the post, the pulse is reflected from
the free end. (b) When a pulse trav-
els down a rope that is fixed at one
end, the reflected pulse is inverted.

ADVANCED TOPICS

See “De Broglie Waves” in 
Appendix J: Advanced Topics
to learn about the wave charac-
teristics that all matter exhibits at
the microscopic level.



STANDING WAVES

Consider a string that is attached on one end to a rigid support and that is

shaken up and down in a regular motion at the other end. The regular motion

produces waves of a certain frequency, wavelength, and amplitude traveling

down the string. When the waves reach the other end, they are reflected back

toward the oncoming waves. If the string is vibrated at exactly the right fre-

quency, a —a resultant wave pattern that appears to be station-

ary on the string—is produced. The standing wave consists of alternating

regions of constructive and destructive interference.

Standing waves have nodes and antinodes

Figure 20(a) shows four possible standing waves for a given string length. The

points at which complete destructive interference happens are called 

There is no motion in the string at the nodes. But midway between two adja-

cent nodes, the string vibrates with the largest amplitude. These points are

called 

Figure 20(b) shows the oscillation of the second case shown in Figure 20(a)

during half a cycle. All points on the string oscillate vertically with the same

frequency, except for the nodes, which are stationary. In this case, there are

three nodes (N ) and two antinodes (A), as illustrated in the figure.

antinodes.

nodes.

standing wave

393Vibrations and Waves

t = T

t = 0
N

N

A

A

N

t = T

t = T

t = T

1
8

3
8

1

4

1

2

(a)

(b)

Figure 20

(a) This photograph shows four possible standing waves that 
can exist on a given string. (b) The diagram shows the progres-
sion of the second standing wave for one-half of a cycle.

node

a point in a standing wave that

maintains zero displacement 

standing wave

a wave pattern that results when

two waves of the same fre-

quency, wavelength, and ampli-

tude travel in opposite directions

and interfere

antinode

a point in a standing wave,

halfway between two nodes, 

at which the largest displace-

ment occurs



Only certain frequencies, and therefore wavelengths, produce standing

wave patterns. Figure 21 shows standing waves for a given string length. In

each case, the curves represent the position of the string at different instants

of time. If the string were vibrating rapidly, the several positions would blur

together and give the appearance of loops, like those shown in the diagram. A

single loop corresponds to either a crest or trough alone, while two loops cor-

respond to a crest and a trough together, or one wavelength.

The ends of the string must be nodes because these points cannot vibrate.

As you can see in Figure 21, a standing wave can be produced for any wave-

length that allows both ends of the string to be nodes. For example, in

Figure 21(b), each end is a node, and there are no nodes in between. Because

a single loop corresponds to either a crest or trough alone, this standing wave

corresponds to one-half of a wavelength. Thus, the wavelength in this case is

equal to twice the string length (2L).

The next possible standing wave, shown in Figure 21(c), has three nodes:

one at either end and one in the middle. In this case, there are two loops, which

correspond to a crest and a trough. Thus, this standing wave has a wavelength

equal to the string length (L). The next case, shown in Figure 21(d), has a

wavelength equal to two-thirds of the string length �
2

3
L�, and the pattern contin-

ues. Wavelengths between the values shown here do not produce standing

waves because they allow only one end of the string to be a node.
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SECTION REVIEW

1. A wave of amplitude 0.30 m interferes with a second wave of amplitude

0.20 m. What is the largest resultant displacement that may occur?

2. A string is rigidly attached to a post at one end. Several pulses of ampli-

tude 0.15 m sent down the string are reflected at the post and travel back

down the string without a loss of amplitude. What is the amplitude at a

point on the string where the maximum displacement points of two

pulses cross? What type of interference is this?

3. How would your answer to item 2 change if the same pulses were sent

down a string whose end is free? What type of interference is this?

4. A stretched string fixed at both ends is 2.0 m long. What are three wave-

lengths that will produce standing waves on this string? Name at least

one wavelength that would not pro-

duce a standing wave pattern, and

explain your answer.

5. Interpreting Graphics Look at

the standing wave shown in Figure 22.

How many nodes does this wave have? How many antinodes?

Figure 21

Only certain frequencies produce
standing waves on this fixed string.
The wavelength of these standing
waves depends on the string length.
Possible wavelengths include 2L (b),

L (c), and 
2

3
 L (d).

(a)

L

(b)

(c)

(d)

Figure 22



KEY IDEAS

Section 1   Simple Harmonic Motion

• In simple harmonic motion, restoring force is proportional to displacement.

• A mass-spring system vibrates with simple harmonic motion, and the

spring force is given by Hooke’s law.

• For small angles of displacement (<15°), a simple pendulum swings with

simple harmonic motion.

• In simple harmonic motion, restoring force and acceleration are maxi-

mum at maximum displacement and speed is maximum at equilibrium.

Section 2   Measuring Simple Harmonic Motion

• The period of a mass-spring system depends only on the mass and the

spring constant. The period of a simple pendulum depends only on the

string length and the free-fall acceleration.

• Frequency is the inverse of period.

Section 3   Properties of Waves

• As a wave travels, the particles of the medium vibrate around an equilibri-

um position.

• In a transverse wave, vibrations are perpendicular to the direction of wave

motion. In a longitudinal wave, vibrations are parallel to the direction of

wave motion.

• Wave speed equals frequency times wavelength.

Section 4   Wave Interactions

• If two or more waves are moving through a medium, the resultant wave is

found by adding the individual displacements together point by point.

• Standing waves are formed when two waves that have the same frequency,

amplitude, and wavelength travel in opposite directions and interfere.

KEY TERMS

simple harmonic motion 

(p. 369)

amplitude (p. 376)

period (p. 376)

frequency (p. 376)

medium (p. 382)

mechanical wave (p. 382)

transverse wave (p. 384)

crest (p. 384)

trough (p. 384)

wavelength (p. 384)

longitudinal wave (p. 385)

constructive interference 

(p. 390)

destructive interference 

(p. 391)

standing wave (p. 393)

node (p. 393)

antinode (p. 393)
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PROBLEM SOLVING

See Appendix D: Equations for 
a summary of the equations
introduced in this chapter. If
you need more problem-solving
practice, see Appendix I: 
Additional Problems.

Variable Symbols

Quantities Units

Felastic spring force N newtons

k spring constant N/m newtons/meter

T period s seconds

f frequency Hz hertz = s–1

l wavelength m meters



ReviewCHAPTER 11

SIMPLE HARMONIC MOTION

Review Questions

1. What characterizes an object’s motion as simple

harmonic?

2. List four examples of simple harmonic motion.

3. Does the acceleration of a simple harmonic oscilla-

tor remain constant during its motion? Is the accel-

eration ever zero? Explain.

4. A pendulum is released 40° from its resting posi-

tion. Is its motion simple harmonic?

5. April is about to release the bob of a pendulum.

Before she lets go, what sort of potential energy does

the bob have? How does the energy of the bob

change as it swings through one full cycle of motion?

Conceptual Questions

6. An ideal mass-spring system vibrating with simple har-

monic motion would oscillate indefinitely. Explain why.

7. In a simple pendulum, the weight of the bob can be

divided into two components, one tangent to the

bob’s direction of motion and the other perpen-

dicular to the bob’s direction of motion. Which of

these is the restoring force, and why?

Practice Problems

For problems 8–9, see Sample Problem A.

8. Janet wants to find the spring constant of a given

spring, so she hangs the spring vertically and attaches

a 0.40 kg mass to the spring’s other end. If the spring

stretches 3.0 cm from its equilibrium position, what

is the spring constant?

9. In preparing to shoot an arrow, an archer pulls a

bowstring back 0.40 m by exerting a force that

increases uniformly from 0 to 230 N. What is the

equivalent spring constant of the bow?

PERIOD AND FREQUENCY

Review Questions

10. A child swings on a playground swing. How many

times does the child swing through the swing’s

equilibrium position during the course of a single

period of motion?

11. What is the total distance traveled by an object

moving back and forth in simple harmonic motion

in a time interval equal to its period when its ampli-

tude is equal to A?

12. How is the period of a simple harmonic vibration

related to its frequency?

Conceptual Questions

13. What happens to the period of a simple pendulum

when the pendulum’s length is doubled? What hap-

pens when the suspended mass is doubled?

14. A pendulum bob is made with a ball filled with

water. What would happen to the frequency of

vibration of this pendulum if a hole in the ball

allowed water to slowly leak out? (Treat the pendu-

lum as a simple pendulum.)

15. If a pendulum clock keeps perfect time at the base

of a mountain, will it also keep perfect time when

moved to the top of the mountain? Explain.

16. If a grandfather clock is running slow, how can you

adjust the length of the pendulum to correct the

time?

17. A simple pendulum can be used as an altimeter on a

plane. How will the period of the pendulum vary as

the plane rises from the ground to its final cruising

altitude?

18. Will the period of a vibrating mass-spring system on

Earth be different from the period of an identical

mass-spring system on the moon? Why or why not?
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Practice Problems

For problems 19–20, see Sample Problem B.

19. Find the length of a pendulum that oscillates with a

frequency of 0.16 Hz.

20. A pendulum that moves through its equilibrium posi-

tion once every 1.000 s is sometimes called a seconds

pendulum.

a. What is the period of any seconds pendulum?

b. In Cambridge, England, a seconds pendulum is

0.9942 m long. What is the free-fall accelera-

tion in Cambridge?

c. In Tokyo, Japan, a seconds pendulum is

0.9927 m long. What is the free-fall accelera-

tion in Tokyo?

For problem 21, see Sample Problem C.

21. A spring with a spring constant of 1.8 × 102 N/m is

attached to a 1.5 kg mass and then set in motion.

a. What is the period of the mass-spring system?

b. What is the frequency of the vibration?

PROPERTIES OF WAVES

Review Questions

22. What is common to all waves?

23. How do transverse and longitudinal waves differ?

24. The figure below depicts a pulse wave traveling on a

spring.

a. In which direction are the particles of the

medium vibrating?

b. Is this wave transverse or longitudinal?

25. In a stretched spring, several coils are pinched

together and others are spread farther apart than

usual. What sort of wave is this? 

26. How far does a wave travel in one period?

27. If you shook the end of a rope up and down three

times each second, what would be the period of

the waves set up in the rope? What would be the

frequency?

28. Give three examples of mechanical waves. How are

these different from electromagnetic waves, such as

light waves?

Conceptual Questions

29. How does a single point on a string move as a trans-

verse wave passes by that point?

30. What happens to the wavelength of a wave on a

string when the frequency is doubled? What hap-

pens to the speed of the wave?

31. Why do sound waves need a medium through

which to travel?

32. Two tuning forks with frequencies of 256 Hz and

512 Hz are struck. Which of the sounds will move

faster through the air?

33. What is one advantage of transferring energy by

electromagnetic waves?

34. A wave traveling in the positive x direction with a

frequency of 25.0 Hz is shown in the figure above.

Find the following values for this wave:

a. amplitude

b. wavelength

c. period

d. speed

Practice Problems

For problem 35, see Sample Problem D.

35. Microwaves travel at the speed of light, 3.00 × 108 m/s.

When the frequency of microwaves is 9.00 × 109 Hz,

what is their wavelength?

18 cm

10.0 cm
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WAVE INTERACTIONS

Review Questions

36. Using the superposition principle, draw the resultant

waves for each of the examples below.

37. What is the difference between constructive inter-

ference and destructive interference?

38. Which one of the waveforms shown below is the

resultant waveform?

39. Anthony sends a series of pulses of amplitude

24 cm down a string that is attached to a post at one

end. Assuming the pulses are reflected with no loss

of amplitude, what is the amplitude at a point on

the string where two pulses are crossing if

a. the string is rigidly attached to the post?

b. the end at which reflection occurs is free to

slide up and down?

Conceptual Questions

40. Can more than two waves interfere in a given

medium?

41. What is the resultant displacement at a position

where destructive interference is complete?

42. When two waves interfere, can the resultant wave be

larger than either of the two original waves? If so,

under what conditions?

43. Which of the following wavelengths will produce

standing waves on a string that is 3.5 m long?

a. 1.75 m

b. 3.5 m

c. 5.0 m

d. 7.0 m

−y

0

+y

y2
y1

y1 y1
y3

y3

y3 y2

y2

(a) (b)

MIXED REVIEW

44. In an arcade game, a 0.12 kg disk is shot across a

frictionless horizontal surface by being compressed

against a spring and then released. If the spring has

a spring constant of 230 N/m and is compressed

from its equilibrium position by 6.0 cm, what is the

magnitude of the spring force on the disk at the

moment it is released?

45. A child’s toy consists of a piece

of plastic attached to a spring,

as shown at right. The spring 

is compressed against the floor 

a distance of 2.0 cm and

released. If the spring constant

is 85 N/m, what is the mag-

nitude of the spring force act-

ing on the toy at the moment it

is released?

46. You dip your finger into a pan of water twice each

second, producing waves with crests that are sepa-

rated by 0.15 m. Determine the frequency, period,

and speed of these water waves.

47. A sound wave traveling at 343 m/s is emitted by the

foghorn of a tugboat. An echo is heard 2.60 s later.

How far away is the reflecting object?

48. The notes produced by a violin range in frequency

from approximately 196 Hz to 2637 Hz. Find the pos-

sible range of wavelengths in air produced by this

instrument when the speed of sound in air is 340 m/s.

49. What is the free-fall acceleration in a location where

the period of a 0.850 m long pendulum is 1.86 s?

50. Yellow light travels through a certain glass block at a

speed of 1.97 × 108 m/s. The wavelength of the light

in this particular type of glass is 3.81 × 10–7 m

(381 nm). What is the frequency of the yellow light?

51. A certain pendulum clock that works perfectly on

Earth is taken to the moon, where ag = 1.63 m/s2. If

the clock is started at 12:00 A.M., what will it read

after 24.0 h have passed on Earth?
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In this graphing calculator activity, you will enter

the period of a pendulum on Earth’s surface. The

calculator will use the previous equation to deter-

mine L, the length of the pendulum. The calculator

will then use this length to display a graph showing

how the period of this pendulum changes as free-

fall acceleration changes. You will use this graph to

find the period of a pendulum on various planets.

Visit go.hrw.com and type in the keyword

HF6VIBX to find this graphing calculator activity.

Refer to Appendix B for instructions on download-

ing the program for this activity.

Pendulum

Would a pendulum have the same period of oscilla-

tion on Mars, Venus, or Neptune? A pendulum’s

period, as you learned earlier in this chapter, is

described by the following equation:

T = 2p��⎯aLg

⎯

In this equation, T is the period, L is the length of

the pendulum, and ag is the free-fall acceleration

(9.81 m/s2 on Earth’s surface). This equation can be

rearranged to solve for L if T is known.

L = ⎯
a

4

g

p

T
2

2

⎯

1. Design an experiment to compare the spring con-

stant and period of oscillation of a system built with

two (or more) springs connected in two ways: in

series (attached end to end) and in parallel (one end

of each spring anchored to a common point). If

your teacher approves your plan, obtain the neces-

sary equipment and perform the experiment.

2. The rule that the period of a pendulum is deter-

mined by its length is a good approximation for

amplitudes below 15°. Design an experiment to

investigate how amplitudes of oscillation greater

than 15° affect the motion of a pendulum.

List what equipment you would need, what 

measurements you would perform, what data you

would record, and what you would calculate. If

your teacher approves your plan, obtain the neces-

sary equipment and perform the experiment.

3. Research earthquakes and different kinds of seismic

waves. Create a presentation about earthquakes that

includes answers to the following questions as well

as additional information: Do earthquakes travel

through oceans? What is transferred from place to

place as seismic waves propagate? What determines

their speed?

4. Identify examples of periodic motion in nature. Cre-

ate a chart describing the objects involved, their path

of motion, their periods, and the forces involved.

Which of the periodic motions are harmonic and

which are not?

Alternative Assessment



MULTIPLE CHOICE

Base your answers to questions 1–6 on the informa-

tion below.

A mass is attached to a spring and moves with simple

harmonic motion on a frictionless horizontal surface,

as shown above.

1. In what direction does the restoring force act?

A. to the left

B. to the right

C. to the left or to the right depending on whether

the spring is stretched or compressed

D. perpendicular to the motion of the mass

2. If the mass is displaced −0.35 m from its equilibri-

um position, the restoring force is 7.0 N. What is

the spring constant?

F. −5.0 × 10−2 N/m

G. −2.0 × 101 N/m

H. 5.0 × 10−2 N/m

J. 2.0 × 101 N/m

3. In what form is the energy in the system when the

mass passes through the equilibrium position?

A. elastic potential energy

B. gravitational potential energy

C. kinetic energy

D. a combination of two or more of the above

4. In what form is the energy in the system when the

mass is at maximum displacement?

F. elastic potential energy

G. gravitational potential energy

H. kinetic energy

J. a combination of two or more of the above

5. Which of the following does not affect the period

of the mass-spring system?

A. mass

B. spring constant

C. amplitude of vibration

D. All of the above affect the period.

6. If the mass is 48 kg and the spring constant is

12 N/m, what is the period of the oscillation?

Base your answers to questions 7–10 on the informa-

tion below.

A pendulum bob hangs from a string and moves with

simple harmonic motion, as shown above.

7. What is the restoring force in the pendulum?

A. the total weight of the bob

B. the component of the bob’s weight tangent to

the motion of the bob

C. the component of the bob’s weight perpendic-

ular to the motion of the bob

D. the elastic force of the stretched string

8. Which of the following does not affect the period

of the pendulum?

F. the length of the string

G. the mass of the pendulum bob

H. the free-fall acceleration at the pendulum’s

location

J. All of the above affect the period.

θ

F. 8p s

G. 4p s

H. p s

J. 
p

2
 s
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9. If the pendulum completes exactly 12 cycles in

2.0 min, what is the frequency of the pendulum?

10. If the pendulum’s length is 2.00 m and ag =
9.80 m/s2, how many complete oscillations does the

pendulum make in 5.00 min?

Base your answers to questions 11–13 on the graph

below.

11. What kind of wave does this graph represent?

A. transverse wave

B. longitudinal wave

C. electromagnetic wave

D. pulse wave

12. Which letter on the graph is used for the wavelength?

13. Which letter on the graph is used for a trough?

Base your answers to questions 14–15 on the pas-
sage below.

A wave with an amplitude of 0.75 m has the same

wavelength as a second wave with an amplitude of

0.53 m. The two waves interfere.

14. What is the amplitude of the resultant wave if the

interference is constructive?

F. 0.22 m

G. 0.53 m

H. 0.75 m

J. 1.28 m

A. A

B. B

C. C

D. D

F. A

G. B

H. C

J. D

D
is

p
la

c
e
m

e
n
t

x

y

BC

A
D

F. 1.76

G. 21.6

H. 106

J. 239

A. 0.10 Hz

B. 0.17 Hz

C. 6.0 Hz

D. 10 Hz

15. What is the amplitude of the resultant wave if the

interference is destructive?

16. Two successive crests of a transverse wave are

1.20 m apart. Eight crests pass a given point every

12.0 s. What is the wave speed?

SHORT RESPONSE

17. Green light has a wavelength of 5.20 × 10−7 m and

a speed in air of 3.00 × 108 m/s. Calculate the fre-

quency and the period of the light.

18. What kind of wave does not need a medium

through which to travel?

19. List three wavelengths that could form standing

waves on a 2.0 m string that is fixed at both ends.

EXTENDED RESPONSE

20. A visitor to a lighthouse wishes to find out the

height of the tower. The visitor ties a spool of

thread to a small rock to make a simple pendulum.

Then, the visitor hangs the pendulum down a spi-

ral staircase in the center of the tower. The period

of oscillation is 9.49 s. What is the height of the

tower? Show all of your work.

21. A harmonic wave is traveling along a rope. The

oscillator that generates the wave completes 40.0

vibrations in 30.0 s. A given crest of the wave trav-

els 425 cm along the rope in a period of 10.0 s.

What is the wavelength? Show all of your work.

F. 0.667 m/s

G. 0.800 m/s

H. 1.80 m/s

J. 9.60 m/s

A. 0.22 m

B. 0.53 m

C. 0.75 m

D. 1.28 m
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Take a little time to look over a
test before you start. Look for questions that may be
easy for you to answer, and answer those first. Then,
move on to the harder questions.
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The period of a pendulum is the time required for the pendulum to complete

one cycle. In this lab, you will construct models of a simple pendulum using

different masses and lengths of cord. You will design an experiment to meas-

ure the period of each model and to determine how the period depends on

length and mass. Your experiment should include several trials at a constant

mass but at different lengths, and several more trials at constant length but

with different masses. In the Analysis, you will also use the period and the

length of the cord for each trial to calculate the free-fall acceleraction, ag, at

your geographical location.

PROCEDURE

1. Study the materials provided, and design an experiment to meet the

goals stated above.

2. Write out your lab procedure, including a detailed description of the

measurements to take during each step and the number of trials to per-

form. You may use Figure 1 as a guide to a possible setup. You should

keep the amplitude of the swing less than 15° in each trial.

3. Ask your teacher to approve your procedure.

4. Follow all steps of your procedure.

5. Clean up your work area. Put equipment away safely so that it is ready to

be used again.

OBJECTIVES

•Construct simple pendu-
lums, and find their
periods.

•Calculate the value for ag,
the free-fall acceleration.

•Examine the relation-
ships between length,
mass, and period for dif-
ferent pendulums.

MATERIALS LIST

• balance

• cord

• meterstick

• pendulum bobs

• pendulum clamp

• protractor

• stopwatch

• support stand

Inquiry Lab
CHAPTER 11

Design Your Own

Simple Harmonic Motion 
of a Pendulum

SAFETY

• Tie back long hair, secure loose clothing, and remove loose jewelry to

prevent their getting caught in moving parts or pulleys. Put on goggles.

• Attach masses to the thread and the thread to clamps securely. Swing

masses in areas free of people and obstacles. Swinging or dropped

masses can cause serious injury.
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ANALYSIS

1. Organizing Data For each trial, calculate the period of the pendulum.

2. Organizing Data Calculate the value for the free-fall acceleration, ag,

for each trial. Use the equation for the period of a simple pendulum,

rearranged to solve for ag.

3. Constructing Graphs Plot the following graphs:

a. the period vs. the length (for constant-mass trials)

b. the period vs. the mass of the bob (for constant-length trials)

c. the period vs. the square root of the length (for constant-mass trials)

CONCLUSIONS

4. Evaluating Results Use 9.81 m/s2 as the accepted value for ag.

a. Compute the absolute error for each trial using the following equation:

absolute error = |experimental − accepted |

b. Compute the relative error for each trial using the following equation:

relative error =

5. Drawing Conclusions Based on your data and your graphs, how does

the mass of the pendulum bob affect the period of vibration?

6. Drawing Conclusions Based on your data and your graphs, how does

the length of the pendulum affect the period of vibration?

(experimental − accepted)


accepted

Vibrations and Waves

Figure 1

• Hold the bob so that the cord is
perfectly straight while you measure
the angle.

• Release the bob gently so that it
swings smoothly. Practice counting
and timing cycles to get good
results.



1789 – The storming of the

Bastille marks the climax of the

French Revolution.

1804 – Richard

Trevithick builds and

tests the first steam

locomotive. It pulls 10

tons along a distance

of 15 km at a speed

of 8 km/h.

1804 – Saint-Domingue,

under the control of the

French-African majority led

by Toussaint-Louverture,

becomes the independent

Republic of Haiti. Over the

next two decades most of

Europe’s western colonies

become independent.

1796 – Edward

Jenner develops the

smallpox vaccine.

Physics and Its World Timeline 1785–1830

1798 Q = mcp∆T

Benjamin Thompson (Count

Rumford) demonstrates that

energy transferred as heat

results from mechanical

processes, rather than the

release of caloric, the heat fluid

that has been widely believed to

exist in all substances.

Timeline404

Alessandro Volta develops the

first current-electricity cell using

alternating plates of silver and zinc.

1800

∆V =
∆PE electric

q

ml = d(sinq)

Thomas Young demonstrates

that light rays interfere, providing

the first substantial support for a

wave theory of light.

1801

•

•

1780

•

•

•

•

•

•

•

•

•

1790
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•
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•

1800

•

•

•

•

•

•

•

•

•

1810

•

•

•

•

•

•
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1810 – Kamehameha I

unites the Hawaiian islands

under a monarchy.

1811 – Mathematician Sophie Germain

writes the first of three papers on the

mathematics of vibrating surfaces. She later

addresses one of the most famous problems in

mathematics—Fermat’s last theorem—proving

it to be true for a wide range of conditions.

1826 – Katsushika Hokusai begins

his series of prints Thirty-Six Views of

Mount Fuji.

1818 – Mary Shelley

writes Frankenstein, or the

Modern Prometheus.

Primarily thought of as a

horror novel, the book’s

emphasis on science and

its moral consequences

also qualifies it as the first

“science fiction” novel.

1830 – Hector Berlioz

composes his Symphonie

Fantastique, one of the first

Romantic works for large

orchestra that tells a story

with music.

Augustin Fresnel begins his

research in optics, the results of

which will confirm and explain

Thomas Young’s discovery of

interference and will firmly

establish the wave model of light

first suggested by Christiaan

Huygens over a century earlier.
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Hans Christian Oersted

demonstrates that an electric current

produces a magnetic field. (Gian

Dominico Romagnosi, an amateur

scientist, discovered the effect 18 years

earlier, but at the time attracted no

attention.) André-Marie Ampére

repeats Oersted’s experiment and

formulates the law of electro-

magnetism that today bears his name.
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